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A two-parameter turbulence model is used to numerically study flow and heat trans- 
fer in a channel rotating about its transverse axis. 

It is known that the rotation of a channel about its transverse axis leads to emergence 
of the flow core and the formation of thin Ekman boundary layers on the surfaces bounding the 
region of flow in the direction of the rotation axis. This is seen in "pure" form in a chan- 
nel formed by two parallel planes which are perpendicular to the rotation axis. Laminar flow 
and heat transfer in such a channel were studied in [I] by analytic methods. In turbulent 
flow, restructuring of the velocity field involves significant changes in the characteristics 
of turbulent transport. As shown by experimental data on friction [2, 3], rotation at a cer- 
tain rate also leads to laminarization of the initial turbulent flow. Below we examine these 
problems by a numerical method on the basis of a two-parameter turbulence model k-~ [4]. 

We will examine the flow of an incompressible fluid along a prismatic slit-shaped channel 
with long parallel sides separated by a distance 2h. The channel rotates with a constant 
angular velocity ~ about the axis which is perpendicular to the sides of the channel. The 
short end walls determine the general direction of transfer the fluid mass. 

We will introduce a Cartesian coordinate system rigidly connected with the channel and 
oriented so that the y axis is directed along the rotation axis and the z axis is parallel 
to the channel walls in the flow direction. The coordinate origin is located in the middle 
plane. Assuming averaged flow which is steady-state over time and which is developed with 
respect to the longitudinal coordinate z, we will ignore end effects at the end walls. Thus, 
the fields of velocity and the turbulence characteristics are assumed to be independent only 
of the transverse coordinate y. 

We will study heat transfer on the assumption of constancy of the heat flux along the 
walls, development with respect to z, and uniformity with respect to the transverse coordi- 
nate x. We will ignore the effect of buoyancy and dissipative processes caused by deforma- 
tion of the mean velocity field. 

Introducing the modified pressure p* = <p>/p -- ~2r2/2, we write the following system of 
Reynolds equations and energy equations with allowance for the above assumptions: 

v - -  ( u v >  - + 2 c o W ,  
dy dy -~x 

d ( dW ) Op* (2) < ~v > = 2coU, 
dy dy Oz 

Oy Pr Oy < tv > = W OT - 0--7- (3) 

We establish the boundary conditions: 

U=W=0, T=T w--oz+const at Y=--+h. 

It follows from (I), (2) that p* is a linear function of the coordinates x and z: 

p* = Ax + Bz + const. 

To determine the constants A and B, we have two integral equations 
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the first of which is the condition of flow at a specified rate; the second is a consequence 
of the impermeability of the end walls of the channel. To close the problem we adopt the 

hypothesis 

dU d W  dT (4) 
-- < uv > = v t -  , < wv > =vt - -  , < tv > = , ~  

dy dy dy 

and use the k--s turbulence model [4]. The latter is valid for calculating flows with low 
values of the turbulent Reynolds number. 

In the flow being studied, the vector of the Coriolis body force lies in a plane per- 
pendicular to the direction of the shift in velocity. Analysis of the differential equations 
for the Reynolds stresses shows that in this case there are no grounds for expecting signifi- 
cant effects from the direct action of rotation on turbulent transport. In any case, the 
errors caused by omitting the effects of direct action are of the same order of magnitude as 
those due to assumption (4) on the scalar character of vt" In this sense, the motion being 
studied is similar to the flow at the surface of a rotating disk. The k--e model can be used 
very successfully in calculations of the flow on a rotating disk [5]. These facts and the 
conclusions reached in [6] regarding the values of the empirical constants dictated the use 
of the model in [4] in the unchanged form: 

dy ('~+'@-~- =- -O+e+2 , ,  \--yf- 

[/ : d vt de e• + C~f~ 
dg a~ - -c l  ~ k GG~,, 

k 2 
'h = c~ exp [ - -2 .5 / (1  § Red50)] - - ,  

8 

k ~ 
f .  = 1.0 - -  O,3exp (--Ret~), Re t = , 

'V8 

c 1 =  1.55; c 2 = 2 , 0 ;  c 3 = 2 . 0 ;  c ~ = 0 . 0 9 ;  a~---- 1,3, 

Assuming 

k = O , e = O  at y = + _ h .  

T = T w + ahO (g), 

we w r i t e  t h e  f o l l o w i n g  e q u a t i o n  f r o m  (3)  a n d  (4)  f o r  t h e  t e m p e r a t u r e  p r o f i l e :  

d v @ v t  --  
dg h 

U s i n g  t h e  e q u a t i o n  Nu = 2 h q w / ~ , ( T  w -- Tm),  we o b t a i n  t h e  f o l l o w i n g  f r o m  t h e  h e a t  b a l a n c e  e q u a -  
t i o n  : 

h 

--2PrReW~h/ ~ WOd9. Nu= 
--k 

As the determining criteria of the flow we select the Reynolds number Re = 2Wmh/~ and the 
complex y = ~h2/~. When presenting the results of solution of the stated problem, we will 
have in mind the symmetry of the flow relative to the plane y = 0. 

The system of differential equations was integrated for U, W, k, e, and O by a numerical 
method, with approximation of the derivatives by finite differences in accordance with a con- 
servative scheme on a nonuniform grid [7]. The nodes were moved closer together at the wall 
in accordance with the following law of geometric progression: 

~m ~ 1 - - q  ~ l--q 
= , ~i-- , m = 2 ,  M- - l ' ,  

1 - - q  1 __qM--1 

where ~ = I -- y/h, M is the number of grid nodes in the range 0 ~ ~ ~ I. 
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Fig. I. Profiles of the components of velocity, temperature, and eddy 
viscosity at Re = 12,400; Pr = 0.71: 1) y = 0; 2) 100; 3) 300; I) W~ II) 
U~ III) O~ ; IV) v. 

Fig. 2. Friction coefficient: I) y = 0; 2) 500; 3) 1000; 4) 2000; 5) 
4000; 6) laminar flow in a stationary channel. 

We used the establishment method to find the steady-state solution. The time step T m 
was changed from node to node in proportion to the local step with respect to the coordinate 
Tm = ~(~m+1 -- ~m) but it remained unchanged during the establishment process. 

The method used to linearize the equations for k and e to a significant degree deter- 
mines the permissible time step --more accurately, it determines the multiplier ~. Calcula- 
tions showed the expediency of using the following form of linearization: 

Systems of algebraic equations for kn+1, m and En+1, m were solved by the trial-run method 
at each new (n + I) time step for the scalar equations, while systems for Un+l, m and Wn+L, m 
were solved simultaneously by the same method for the three-point vector equations. 

We used the Prandtl hypothesis to construct the initial distribution W0(y). Let the 
agitation ~ be specified from the Prandtl--Nikuradze formula with allowance for the Van Driest 
modification [8]. We assumed that U0(y) = u. The initial distributions for k0 and Co were 
determined from the Townsend formula: 

/ d W  2 
ko (g) = - -  co < wv > =Col~ (--~-y ) , 

with co = 10/3 and the assumption of locally equilibrium turbulence e0(y) = G0(y). The con- 
structed initial distributions approximately described the fields of W, k, and s in turbulent 
flow along a stationary plane-parallel channel. 

We used the steady-state distributions W(y) and ~t(Y) in solving the linear equation 
for the temperature profile. The main calculations were performed with M = 51 (q = 1.1) and 
M = 101 (q = ].04). As a test we choose a problem on laminar flow in a slit-shaped channel 
for which an analytic solution is known [I]. We also choose results of calculations of tur- 
bulent flow in a stationary channel [4, 9] performed using the same turbulence model. In all 
cases, we obtained nearly the same results. 

Figure I shows the effect of rotation on the fields of mean velocity, temperature, and 
eddy viscosity. Secondary flow develops with an increase in the rotation rate, the profile 
W(y) becomes fuller, and a core emerges in the flow with a uniform velocity distribution along 
lines parallel to the rotation axis and shear boundary layers which can be classified as Ekman 
layers. 

It follows from analysis of the fields of k that an increase in the parameter y is ac- 
companied by gradual degeneration of pulsative motion in the flow core. It is important to 
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Fig. 3. Dependence of the maximum values of kinetic turbulence 
energy and eddy viscosity in the Ekman layer on the criterion Reg. 

Fig. 4. Dependence of the rate of heat transfer on the rotation 
parameter: l) Re = 12,400; 2) 30,400; 3) 61,600; the dashed lines 
correspond to y = U; the dot--dash line corresponds to Nu at y + 
for the laminar regime [1]. 

emphasize here that the maximum value of the kinetic turbulence energy expended in the transi- 
tion region from the viscous sublayer to the turbulence zone changes relatively little. Only 
when a certain rotation rate is reached (at y ~ 400 for Re = ]2,400) is there a critical re- 
duction in k to zero throughout the flow. Thus, with sufficiently large values of u the 
pulsative motion initially introduced into the flow decays complete during the establishment 
process. 

The level of ~t changes sharply with an increase in y. This is connected mainly with a 
decrease in the turbulence scale caused by thinning of the shear layer. The changes in the 
field ~t(Y) also involve a fundamental restructuring of the temperature profile. 

The results of a large number of calculated variants were used to determine the depen- 
dence of the friction coefficient of the rotating channel 

4h Op* 

W/~ az 
on the criteria Re and y (Fig. 2). The dashed extension of curve I was constructed from the 
data in [4]. The straight line 6 corresponds to the friction law in a plane-parallel non- 
rotating channel with laminar motion (~ = 24/Re). The branches of curves 2-5 for laminar and 
turbulent regimes are tentatively connected by dashed segments. 

The points in Fig. 2 show the boundaries of the scatter of the data in [2] with respect 
to the values of Re, which were determined in an analysis of empirical relations for the fric- 
tion coefficient of a channel of square cross section. The dark points denote the lower 
boundary, while the clear points denote the upper boundary. 

At Re ~ 5oOu, laminarization of the flow occurs at the same values of y for which there 
is clear emergence of the flow core and boundary layers. This makes it necessary to change 
over to the criterion Re6 = Wc/~ , which does not contain the scale h and which represents 
the Reynolds number plotted from the characteristic thickness 6 = ~/~ of the laminar Ekman 
layer. 

Figure 3 shows the dependence of two characteristics of the rate of turbulent transport 
on Re G . It is apparent that as Re 6 approaches 3U0, eddy viscosity monotonically decreases 
to a very low value (~ax ~ ~). We did not obtain any solutions with nontrivial values of k 
or v t at Re~ < 310. In the range 3]u < Re~ ~ 450, either a solution with ~t ~ U or a com- 
pletely laminar regime may be obtained, depending on the factors ~, M, and q (with specified 
values of M and q, an increase in ~ leads to decay of k and ~t at all higher values of Re6). 
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It should be noted that the authors of [10], by analyzing spectra of velocity pulsations 
which they measured in a transitional Ekman layer, concluded that turbulence ends at Re~ 
300. Thus, well-known empirical data confirms the results of the theoretical model used here. 

Figure 4 shows the relation Nu(y) at Pr = 0.71 and three values of Re. The values of Nu 
obtained for y = O are roughly 15% lower than those found from the empirical relation 

Nu = 0 .012  (2Re) ~ 8pr  o . 4a , 

w h i c h  w a s  p r o p o s e d  i n  [ 1 1 ]  f o r  h e a t  t r a n s f e r  i n  a s t a t i o n a r y  p l a n e - p a r a l l e l  c h a n n e l  f a r  f r o m  
the inlet. When rotation is superimposed, the rate of heat transfer initially increases some- 
what and then decreases sharply and approaches the level corresponding to the laminar regime 
[I]. Such behavior of Nu(y) at Re = const is due to "competition" between two factors which 
affect heat transfer. The first is connected with fillin~ out of the profile W(y). This, as 
in the case of the laminar regime [I], leads to an increase in Nu. The second effect consists 
of a decrease in turbulent heat transfer in the direction of the y axis. For the chosen model 
[4], this is directly connected with the decrease in eddy viscosity ~t" The data in Fig. 4 
shows that the second effect becomes dominant at y/Re ~ U.01. 

NOTATION 

h, half of the channel height; ~, angular velocity; x, y, z, rotating Cartesian coor- 
dinate system; U, V, W, u, v, w, mean and pulsative components of velocity and directions of 
the x, y, and z axes; T, mean temperature; t, temperature pulsation; p, pressure; p, density; 
p*, modified pressure; r, shortest distance to rotation axis; k, ~, kinetic turbulence energy 
and its rate of dissipation; ~, ~t, kinematic molecular and eddy viscosities; @ , dimension- 
less temperature; Re, Nu, Pr, Reynolds, Nusselt, and Prandtl numbers; u rotation parameter; 
Re6, Reynolds number for the Ekman layer; %, friction coefficient; %,, thermal conductivity; 
Tw, qw, ~w, temperature, heat flux, and total shear stress on the wall; Wm, flow-rate-mean 
velocity; Tm, mass-mean temperature; Wc, value of the component of W in the middle plane; 
U ~ = U/Wc, W ~ = W/Wc, e~ (0), ~t = ~t/~, dimensionless quantities; < >, symbol denoting 
averaging over time; A, B, o, constants of integration. 
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